MakeItFrom.com
Menu (ESC)

C28500 Muntz Metal vs. S32550 Stainless Steel

C28500 Muntz Metal belongs to the copper alloys classification, while S32550 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C28500 Muntz Metal and the bottom bar is S32550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
21
Poisson's Ratio 0.3
0.27
Shear Modulus, GPa 40
80
Shear Strength, MPa 320
540
Tensile Strength: Ultimate (UTS), MPa 520
860
Tensile Strength: Yield (Proof), MPa 380
620

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 900
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 46
53
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
160
Resilience: Unit (Modulus of Resilience), kJ/m3 700
940
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 33
4.4
Thermal Shock Resistance, points 17
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 57 to 59
1.5 to 2.5
Iron (Fe), % 0 to 0.35
57.2 to 67
Lead (Pb), % 0 to 0.25
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.9 to 3.9
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 39.5 to 43
0
Residuals, % 0 to 0.9
0