MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. AISI 334 Stainless Steel

C31400 bronze belongs to the copper alloys classification, while AISI 334 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is AISI 334 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.8 to 29
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 180 to 240
360
Tensile Strength: Ultimate (UTS), MPa 270 to 420
540
Tensile Strength: Yield (Proof), MPa 78 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 1010
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
22
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 42
59
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
140
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
96
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.7 to 13
19
Strength to Weight: Bending, points 11 to 14
19
Thermal Shock Resistance, points 9.6 to 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
55.7 to 62.7
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.7
19 to 21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0