MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. CC490K Brass

Both C31400 bronze and CC490K brass are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 29
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 270 to 420
230
Tensile Strength: Yield (Proof), MPa 78 to 310
110

Thermal Properties

Latent Heat of Fusion, J/g 200
190
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 1040
980
Melting Onset (Solidus), °C 1010
910
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 180
72
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
16
Electrical Conductivity: Equal Weight (Specific), % IACS 43
16

Otherwise Unclassified Properties

Base Metal Price, % relative 29
30
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
28
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
54
Stiffness to Weight: Axial, points 7.1
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 8.7 to 13
7.3
Strength to Weight: Bending, points 11 to 14
9.5
Thermal Diffusivity, mm2/s 54
22
Thermal Shock Resistance, points 9.6 to 15
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Copper (Cu), % 87.5 to 90.5
81 to 86
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 1.3 to 2.5
3.0 to 6.0
Nickel (Ni), % 0 to 0.7
0 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Zinc (Zn), % 5.8 to 11.2
7.0 to 9.5
Residuals, % 0 to 0.4
0