MakeItFrom.com
Menu (ESC)

C31400 Bronze vs. R56406 Titanium

C31400 bronze belongs to the copper alloys classification, while R56406 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C31400 bronze and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.8 to 29
9.1
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 42
40
Tensile Strength: Ultimate (UTS), MPa 270 to 420
980
Tensile Strength: Yield (Proof), MPa 78 to 310
850

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 180
340
Melting Completion (Liquidus), °C 1040
1610
Melting Onset (Solidus), °C 1010
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 180
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 42
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 43
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 42
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 59
85
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 420
3420
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 8.7 to 13
61
Strength to Weight: Bending, points 11 to 14
49
Thermal Diffusivity, mm2/s 54
2.8
Thermal Shock Resistance, points 9.6 to 15
69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 87.5 to 90.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.1
0 to 0.3
Lead (Pb), % 1.3 to 2.5
0
Nickel (Ni), % 0 to 0.7
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 5.8 to 11.2
0
Residuals, % 0 to 0.4
0