MakeItFrom.com
Menu (ESC)

C31600 Bronze vs. Grade CW6MC Nickel

C31600 bronze belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C31600 bronze and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7 to 28
28
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
79
Tensile Strength: Ultimate (UTS), MPa 270 to 460
540
Tensile Strength: Yield (Proof), MPa 80 to 390
310

Thermal Properties

Latent Heat of Fusion, J/g 200
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 33
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 2.7
14
Embodied Energy, MJ/kg 43
200
Embodied Water, L/kg 310
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 58
130
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 690
240
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 8.5 to 15
18
Strength to Weight: Bending, points 11 to 15
17
Thermal Diffusivity, mm2/s 42
2.8
Thermal Shock Resistance, points 9.4 to 16
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 87.5 to 90.5
0
Iron (Fe), % 0 to 0.1
0 to 5.0
Lead (Pb), % 1.3 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0.7 to 1.2
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0.040 to 0.1
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.2 to 10.5
0
Residuals, % 0 to 0.4
0