MakeItFrom.com
Menu (ESC)

C33000 Brass vs. 6013 Aluminum

C33000 brass belongs to the copper alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C33000 brass and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 7.0 to 60
3.4 to 22
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 240 to 300
190 to 240
Tensile Strength: Ultimate (UTS), MPa 320 to 520
310 to 410
Tensile Strength: Yield (Proof), MPa 110 to 450
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 940
650
Melting Onset (Solidus), °C 900
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
38
Electrical Conductivity: Equal Weight (Specific), % IACS 29
120

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 320
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
200 to 900
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 11 to 18
31 to 41
Strength to Weight: Bending, points 13 to 18
37 to 44
Thermal Diffusivity, mm2/s 37
60
Thermal Shock Resistance, points 11 to 17
14 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.8 to 97.8
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 65 to 68
0.6 to 1.1
Iron (Fe), % 0 to 0.070
0 to 0.5
Lead (Pb), % 0.25 to 0.7
0
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0.2 to 0.8
Silicon (Si), % 0
0.6 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 30.8 to 34.8
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15