MakeItFrom.com
Menu (ESC)

C33000 Brass vs. ACI-ASTM CD4MCu Steel

C33000 brass belongs to the copper alloys classification, while ACI-ASTM CD4MCu steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is ACI-ASTM CD4MCu steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
18
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 320 to 520
770
Tensile Strength: Yield (Proof), MPa 110 to 450
550

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
18
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
760
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
28
Strength to Weight: Bending, points 13 to 18
24
Thermal Diffusivity, mm2/s 37
4.5
Thermal Shock Resistance, points 11 to 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 65 to 68
2.8 to 3.3
Iron (Fe), % 0 to 0.070
59.9 to 66.3
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.3
Nickel (Ni), % 0
4.8 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0