MakeItFrom.com
Menu (ESC)

C33000 Brass vs. EN 1.7383 Steel

C33000 brass belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
20 to 23
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
74
Shear Strength, MPa 240 to 300
350 to 380
Tensile Strength: Ultimate (UTS), MPa 320 to 520
560 to 610
Tensile Strength: Yield (Proof), MPa 110 to 450
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 130
460
Melting Completion (Liquidus), °C 940
1470
Melting Onset (Solidus), °C 900
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
3.9
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 320
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
240 to 420
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 18
20 to 22
Strength to Weight: Bending, points 13 to 18
19 to 20
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 11 to 17
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 65 to 68
0 to 0.3
Iron (Fe), % 0 to 0.070
94.3 to 96.6
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0