MakeItFrom.com
Menu (ESC)

C33000 Brass vs. S15700 Stainless Steel

C33000 brass belongs to the copper alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
1.1 to 29
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 240 to 300
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 320 to 520
1180 to 1890
Tensile Strength: Yield (Proof), MPa 110 to 450
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 130
870
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 900
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
640 to 4660
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
42 to 67
Strength to Weight: Bending, points 13 to 18
32 to 43
Thermal Diffusivity, mm2/s 37
4.2
Thermal Shock Resistance, points 11 to 17
39 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
69.6 to 76.8
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0