MakeItFrom.com
Menu (ESC)

C33000 Brass vs. S20161 Stainless Steel

C33000 brass belongs to the copper alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 7.0 to 60
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 300
690
Tensile Strength: Ultimate (UTS), MPa 320 to 520
980
Tensile Strength: Yield (Proof), MPa 110 to 450
390

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 130
870
Melting Completion (Liquidus), °C 940
1380
Melting Onset (Solidus), °C 900
1330
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
12
Density, g/cm3 8.2
7.5
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
360
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
390
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 11 to 18
36
Strength to Weight: Bending, points 13 to 18
29
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 11 to 17
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
65.6 to 73.9
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0