MakeItFrom.com
Menu (ESC)

C33000 Brass vs. S41425 Stainless Steel

C33000 brass belongs to the copper alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C33000 brass and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 7.0 to 60
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 240 to 300
570
Tensile Strength: Ultimate (UTS), MPa 320 to 520
920
Tensile Strength: Yield (Proof), MPa 110 to 450
750

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 130
810
Melting Completion (Liquidus), °C 940
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 950
1420
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
33
Strength to Weight: Bending, points 13 to 18
27
Thermal Diffusivity, mm2/s 37
4.4
Thermal Shock Resistance, points 11 to 17
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 65 to 68
0 to 0.3
Iron (Fe), % 0 to 0.070
74 to 81.9
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Zinc (Zn), % 30.8 to 34.8
0
Residuals, % 0 to 0.4
0