MakeItFrom.com
Menu (ESC)

C33200 Brass vs. 772.0 Aluminum

C33200 brass belongs to the copper alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C33200 brass and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
69
Elongation at Break, % 7.0 to 60
6.3 to 8.4
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 320 to 520
260 to 320
Tensile Strength: Yield (Proof), MPa 110 to 450
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 170
380
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 930
630
Melting Onset (Solidus), °C 900
580
Specific Heat Capacity, J/kg-K 380
870
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
35
Electrical Conductivity: Equal Weight (Specific), % IACS 28
110

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
350 to 430
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 11 to 17
25 to 31
Strength to Weight: Bending, points 13 to 17
31 to 36
Thermal Diffusivity, mm2/s 37
58
Thermal Shock Resistance, points 11 to 17
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 65 to 68
0 to 0.1
Iron (Fe), % 0 to 0.070
0 to 0.15
Lead (Pb), % 1.5 to 2.5
0
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 29 to 33.5
6.0 to 7.0
Residuals, % 0
0 to 0.15