MakeItFrom.com
Menu (ESC)

C33200 Brass vs. ACI-ASTM CN7M Steel

C33200 brass belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 7.0 to 60
44
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 320 to 520
480
Tensile Strength: Yield (Proof), MPa 110 to 450
200

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 900
1450
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 24
32
Density, g/cm3 8.2
8.1
Embodied Carbon, kg CO2/kg material 2.6
5.6
Embodied Energy, MJ/kg 44
78
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
110
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 17
17
Strength to Weight: Bending, points 13 to 17
17
Thermal Diffusivity, mm2/s 37
5.6
Thermal Shock Resistance, points 11 to 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 65 to 68
3.0 to 4.0
Iron (Fe), % 0 to 0.070
37.4 to 48.5
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0