MakeItFrom.com
Menu (ESC)

C33200 Brass vs. AISI 302B Stainless Steel

C33200 brass belongs to the copper alloys classification, while AISI 302B stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is AISI 302B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 7.0 to 60
45
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 240 to 300
410
Tensile Strength: Ultimate (UTS), MPa 320 to 520
580
Tensile Strength: Yield (Proof), MPa 110 to 450
230

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 130
930
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 900
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 44
43
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 17
21
Strength to Weight: Bending, points 13 to 17
20
Thermal Diffusivity, mm2/s 37
4.4
Thermal Shock Resistance, points 11 to 17
13

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
65.7 to 73
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
2.0 to 3.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0