MakeItFrom.com
Menu (ESC)

C33200 Brass vs. AWS ENiCrFe-3

C33200 brass belongs to the copper alloys classification, while AWS ENiCrFe-3 belongs to the nickel alloys. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is AWS ENiCrFe-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
34
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 320 to 520
630

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Melting Completion (Liquidus), °C 930
1370
Melting Onset (Solidus), °C 900
1320
Specific Heat Capacity, J/kg-K 380
460
Thermal Expansion, µm/m-K 20
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
65
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
260

Common Calculations

Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 17
21
Strength to Weight: Bending, points 13 to 17
19
Thermal Shock Resistance, points 11 to 17
18

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
13 to 17
Cobalt (Co), % 0
0 to 0.12
Copper (Cu), % 65 to 68
0 to 0.5
Iron (Fe), % 0 to 0.070
0 to 10
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
5.0 to 9.5
Nickel (Ni), % 0
52 to 81
Niobium (Nb), % 0
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0 to 0.3
Titanium (Ti), % 0
0 to 1.0
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0
0 to 0.5