MakeItFrom.com
Menu (ESC)

C33200 Brass vs. EN 1.0545 Steel

C33200 brass belongs to the copper alloys classification, while EN 1.0545 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is EN 1.0545 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
24
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 300
350
Tensile Strength: Ultimate (UTS), MPa 320 to 520
550
Tensile Strength: Yield (Proof), MPa 110 to 450
370

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.5
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 44
23
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
370
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 17
19
Strength to Weight: Bending, points 13 to 17
19
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 11 to 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 65 to 68
0 to 0.6
Iron (Fe), % 0 to 0.070
95.5 to 99.15
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.85 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.14
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0