MakeItFrom.com
Menu (ESC)

C33200 Brass vs. EN 1.6771 Steel

C33200 brass belongs to the copper alloys classification, while EN 1.6771 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is EN 1.6771 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 7.0 to 60
8.0 to 8.7
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 320 to 520
930 to 1180
Tensile Strength: Yield (Proof), MPa 110 to 450
740 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 130
440
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
46
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 24
5.0
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.9
Embodied Energy, MJ/kg 44
25
Embodied Water, L/kg 320
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
75 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
1460 to 3450
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 17
33 to 41
Strength to Weight: Bending, points 13 to 17
27 to 31
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 11 to 17
27 to 35

Alloy Composition

Carbon (C), % 0
0.27 to 0.33
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
92.2 to 95
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
3.0 to 4.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0

Comparable Variants