MakeItFrom.com
Menu (ESC)

C33200 Brass vs. R56406 Titanium

C33200 brass belongs to the copper alloys classification, while R56406 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 7.0 to 60
9.1
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 320 to 520
980
Tensile Strength: Yield (Proof), MPa 110 to 450
850

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 130
340
Melting Completion (Liquidus), °C 930
1610
Melting Onset (Solidus), °C 900
1560
Specific Heat Capacity, J/kg-K 380
560
Thermal Conductivity, W/m-K 120
7.1
Thermal Expansion, µm/m-K 20
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
36
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 44
610
Embodied Water, L/kg 320
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
85
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
3420
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11 to 17
61
Strength to Weight: Bending, points 13 to 17
49
Thermal Diffusivity, mm2/s 37
2.8
Thermal Shock Resistance, points 11 to 17
69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 65 to 68
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.070
0 to 0.3
Lead (Pb), % 1.5 to 2.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0