MakeItFrom.com
Menu (ESC)

C33200 Brass vs. S44660 Stainless Steel

C33200 brass belongs to the copper alloys classification, while S44660 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C33200 brass and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 7.0 to 60
20
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 240 to 300
410
Tensile Strength: Ultimate (UTS), MPa 320 to 520
660
Tensile Strength: Yield (Proof), MPa 110 to 450
510

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.6
4.3
Embodied Energy, MJ/kg 44
61
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 60 to 960
640
Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 17
24
Strength to Weight: Bending, points 13 to 17
22
Thermal Diffusivity, mm2/s 37
4.5
Thermal Shock Resistance, points 11 to 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 65 to 68
0
Iron (Fe), % 0 to 0.070
60.4 to 71
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 29 to 33.5
0
Residuals, % 0 to 0.4
0