MakeItFrom.com
Menu (ESC)

C33500 Brass vs. EN 2.4851 Nickel

C33500 brass belongs to the copper alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 28
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 220 to 360
430
Tensile Strength: Ultimate (UTS), MPa 340 to 650
650
Tensile Strength: Yield (Proof), MPa 120 to 420
230

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1200
Melting Completion (Liquidus), °C 930
1360
Melting Onset (Solidus), °C 900
1310
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 20
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
49
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 2.7
8.1
Embodied Energy, MJ/kg 45
120
Embodied Water, L/kg 320
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
170
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
130
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 22
22
Strength to Weight: Bending, points 13 to 21
20
Thermal Diffusivity, mm2/s 37
2.9
Thermal Shock Resistance, points 11 to 22
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 62 to 65
0 to 0.5
Iron (Fe), % 0 to 0.1
7.7 to 18
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.5
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0