MakeItFrom.com
Menu (ESC)

C33500 Brass vs. N07776 Nickel

C33500 brass belongs to the copper alloys classification, while N07776 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 28
39
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
79
Shear Strength, MPa 220 to 360
470
Tensile Strength: Ultimate (UTS), MPa 340 to 650
700
Tensile Strength: Yield (Proof), MPa 120 to 420
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
970
Melting Completion (Liquidus), °C 930
1550
Melting Onset (Solidus), °C 900
1500
Specific Heat Capacity, J/kg-K 390
430
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
85
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 2.7
15
Embodied Energy, MJ/kg 45
210
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
180
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 12 to 22
22
Strength to Weight: Bending, points 13 to 21
20
Thermal Shock Resistance, points 11 to 22
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
0 to 24.5
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0