MakeItFrom.com
Menu (ESC)

C33500 Brass vs. S13800 Stainless Steel

C33500 brass belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 28
11 to 18
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 220 to 360
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 340 to 650
980 to 1730
Tensile Strength: Yield (Proof), MPa 120 to 420
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
810
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 24
15
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
1090 to 5490
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12 to 22
35 to 61
Strength to Weight: Bending, points 13 to 21
28 to 41
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 11 to 22
33 to 58

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
73.6 to 77.3
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0