MakeItFrom.com
Menu (ESC)

C33500 Brass vs. S35045 Stainless Steel

C33500 brass belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C33500 brass and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 28
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 220 to 360
370
Tensile Strength: Ultimate (UTS), MPa 340 to 650
540
Tensile Strength: Yield (Proof), MPa 120 to 420
190

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 930
1390
Melting Onset (Solidus), °C 900
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 24
34
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.8
Embodied Energy, MJ/kg 45
83
Embodied Water, L/kg 320
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 160
170
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 860
94
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 22
19
Strength to Weight: Bending, points 13 to 21
19
Thermal Diffusivity, mm2/s 37
3.2
Thermal Shock Resistance, points 11 to 22
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 62 to 65
0 to 0.75
Iron (Fe), % 0 to 0.1
29.4 to 42.6
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
32 to 37
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 33.8 to 37.8
0
Residuals, % 0 to 0.4
0