MakeItFrom.com
Menu (ESC)

C34000 Brass vs. S32906 Stainless Steel

C34000 brass belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C34000 brass and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 340 to 650
850

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
20
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.7
Embodied Energy, MJ/kg 45
52
Embodied Water, L/kg 320
190

Common Calculations

Stiffness to Weight: Axial, points 7.1
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 22
30
Strength to Weight: Bending, points 13 to 21
26
Thermal Diffusivity, mm2/s 37
3.6
Thermal Shock Resistance, points 11 to 22
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 62 to 65
0 to 0.8
Iron (Fe), % 0 to 0.1
56.6 to 63.6
Lead (Pb), % 0.8 to 1.5
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 33 to 37.2
0
Residuals, % 0 to 0.4
0