MakeItFrom.com
Menu (ESC)

C34200 Brass vs. N10003 Nickel

C34200 brass belongs to the copper alloys classification, while N10003 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 3.0 to 17
42
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
80
Shear Strength, MPa 230 to 360
540
Tensile Strength: Ultimate (UTS), MPa 370 to 650
780
Tensile Strength: Yield (Proof), MPa 150 to 420
320

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 910
1520
Melting Onset (Solidus), °C 890
1460
Specific Heat Capacity, J/kg-K 380
420
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
70
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 45
180
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
240
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 13 to 22
24
Strength to Weight: Bending, points 14 to 20
21
Thermal Diffusivity, mm2/s 37
3.1
Thermal Shock Resistance, points 12 to 22
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 62 to 65
0 to 0.35
Iron (Fe), % 0 to 0.1
0 to 5.0
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0