MakeItFrom.com
Menu (ESC)

C34200 Brass vs. S31655 Stainless Steel

C34200 brass belongs to the copper alloys classification, while S31655 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C34200 brass and the bottom bar is S31655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 3.0 to 17
39
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 53 to 91
88
Shear Modulus, GPa 40
78
Shear Strength, MPa 230 to 360
490
Tensile Strength: Ultimate (UTS), MPa 370 to 650
710
Tensile Strength: Yield (Proof), MPa 150 to 420
350

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 910
1430
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 24
17
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 98
230
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 870
310
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 22
25
Strength to Weight: Bending, points 14 to 20
23
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 12 to 22
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 62 to 65
0 to 1.0
Iron (Fe), % 0 to 0.1
63.2 to 71.9
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.5 to 1.5
Nickel (Ni), % 0
8.0 to 9.5
Nitrogen (N), % 0
0.14 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 32 to 36.5
0
Residuals, % 0 to 0.4
0