MakeItFrom.com
Menu (ESC)

C36000 Brass vs. ACI-ASTM CG3M Steel

C36000 brass belongs to the copper alloys classification, while ACI-ASTM CG3M steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is ACI-ASTM CG3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 330 to 530
580
Tensile Strength: Yield (Proof), MPa 140 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1020
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
20
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
130
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
190
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 18
20
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 11 to 18
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.35
58.9 to 70
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0