MakeItFrom.com
Menu (ESC)

C36000 Brass vs. EN 1.4823 Stainless Steel

C36000 brass belongs to the copper alloys classification, while EN 1.4823 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is EN 1.4823 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
3.4
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 330 to 530
620
Tensile Strength: Yield (Proof), MPa 140 to 260
290

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 890
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
17
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
200
Stiffness to Weight: Axial, points 7.0
15
Stiffness to Weight: Bending, points 19
26
Strength to Weight: Axial, points 11 to 18
23
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 37
4.5
Thermal Shock Resistance, points 11 to 18
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.35
60.9 to 70.7
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.0 to 6.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0