MakeItFrom.com
Menu (ESC)

C36000 Brass vs. N06007 Nickel

C36000 brass belongs to the copper alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C36000 brass and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 5.8 to 23
38
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
79
Shear Strength, MPa 210 to 310
470
Tensile Strength: Ultimate (UTS), MPa 330 to 530
690
Tensile Strength: Yield (Proof), MPa 140 to 260
260

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 900
1340
Melting Onset (Solidus), °C 890
1260
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
14

Otherwise Unclassified Properties

Base Metal Price, % relative 23
60
Density, g/cm3 8.2
8.4
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 320
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 62
200
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 340
170
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 11 to 18
23
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 37
2.7
Thermal Shock Resistance, points 11 to 18
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 60 to 63
1.5 to 2.5
Iron (Fe), % 0 to 0.35
18 to 21
Lead (Pb), % 2.5 to 3.7
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 32.5 to 37.5
0
Residuals, % 0 to 0.5
0