MakeItFrom.com
Menu (ESC)

C36200 Brass vs. AISI 316L Stainless Steel

C36200 brass belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20 to 53
9.0 to 50
Poisson's Ratio 0.31
0.28
Rockwell B Hardness 62 to 78
80
Shear Modulus, GPa 39
78
Shear Strength, MPa 210 to 240
370 to 690
Tensile Strength: Ultimate (UTS), MPa 340 to 420
530 to 1160
Tensile Strength: Yield (Proof), MPa 130 to 360
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 45
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
93 to 1880
Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 11 to 14
19 to 41
Strength to Weight: Bending, points 13 to 15
18 to 31
Thermal Diffusivity, mm2/s 37
4.1
Thermal Shock Resistance, points 11 to 14
12 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.15
62 to 72
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.4 to 36.5
0