MakeItFrom.com
Menu (ESC)

C36200 Brass vs. EN 1.0597 Cast Steel

C36200 brass belongs to the copper alloys classification, while EN 1.0597 cast steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is EN 1.0597 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20 to 53
18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 340 to 420
670
Tensile Strength: Yield (Proof), MPa 130 to 360
400

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 900
1470
Melting Onset (Solidus), °C 890
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 28
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.7
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 320
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
430
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 14
24
Strength to Weight: Bending, points 13 to 15
22
Thermal Diffusivity, mm2/s 37
14
Thermal Shock Resistance, points 11 to 14
21

Alloy Composition

Copper (Cu), % 60 to 63
0
Iron (Fe), % 0 to 0.15
99.935 to 100
Lead (Pb), % 3.5 to 4.5
0
Phosphorus (P), % 0
0 to 0.035
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.4 to 36.5
0