MakeItFrom.com
Menu (ESC)

C36200 Brass vs. Grade 9 Titanium

C36200 brass belongs to the copper alloys classification, while grade 9 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is grade 9 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20 to 53
11 to 17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
40
Shear Strength, MPa 210 to 240
430 to 580
Tensile Strength: Ultimate (UTS), MPa 340 to 420
700 to 960
Tensile Strength: Yield (Proof), MPa 130 to 360
540 to 830

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
330
Melting Completion (Liquidus), °C 900
1640
Melting Onset (Solidus), °C 890
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 120
8.1
Thermal Expansion, µm/m-K 21
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.6
36
Embodied Energy, MJ/kg 45
580
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
1380 to 3220
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11 to 14
43 to 60
Strength to Weight: Bending, points 13 to 15
39 to 48
Thermal Diffusivity, mm2/s 37
3.3
Thermal Shock Resistance, points 11 to 14
52 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 60 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 3.5 to 4.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Titanium (Ti), % 0
92.6 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 32.4 to 36.5
0
Residuals, % 0
0 to 0.4