MakeItFrom.com
Menu (ESC)

C36200 Brass vs. Grade Ti-Pd18 Titanium

C36200 brass belongs to the copper alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 20 to 53
17
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 340 to 420
710
Tensile Strength: Yield (Proof), MPa 130 to 360
540

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 120
330
Melting Completion (Liquidus), °C 900
1640
Melting Onset (Solidus), °C 890
1590
Specific Heat Capacity, J/kg-K 380
550
Thermal Conductivity, W/m-K 120
8.2
Thermal Expansion, µm/m-K 21
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.2
4.5
Embodied Carbon, kg CO2/kg material 2.6
41
Embodied Energy, MJ/kg 45
670
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 74 to 140
110
Resilience: Unit (Modulus of Resilience), kJ/m3 89 to 630
1380
Stiffness to Weight: Axial, points 6.9
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 11 to 14
44
Strength to Weight: Bending, points 13 to 15
39
Thermal Diffusivity, mm2/s 37
3.3
Thermal Shock Resistance, points 11 to 14
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 60 to 63
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 3.5 to 4.5
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 32.4 to 36.5
0
Residuals, % 0
0 to 0.4