MakeItFrom.com
Menu (ESC)

C36200 Brass vs. SAE-AISI P4 Steel

C36200 brass belongs to the copper alloys classification, while SAE-AISI P4 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C36200 brass and the bottom bar is SAE-AISI P4 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 39
74
Tensile Strength: Ultimate (UTS), MPa 340 to 420
390 to 1980

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
41
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 28
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
4.4
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 320
68

Common Calculations

Stiffness to Weight: Axial, points 6.9
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 11 to 14
14 to 70
Strength to Weight: Bending, points 13 to 15
15 to 45
Thermal Diffusivity, mm2/s 37
11
Thermal Shock Resistance, points 11 to 14
13 to 64

Alloy Composition

Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
4.0 to 5.3
Copper (Cu), % 60 to 63
0 to 0.25
Iron (Fe), % 0 to 0.15
92.3 to 95.3
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
0.2 to 0.6
Molybdenum (Mo), % 0
0.4 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.1 to 0.4
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 32.4 to 36.5
0