MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. AISI 201 Stainless Steel

C36500 Muntz Metal belongs to the copper alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
4.6 to 51
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 39
77
Shear Strength, MPa 270
450 to 840
Tensile Strength: Ultimate (UTS), MPa 400
650 to 1450
Tensile Strength: Yield (Proof), MPa 160
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
880
Melting Completion (Liquidus), °C 900
1410
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 46
38
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 120
230 to 2970
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
23 to 52
Strength to Weight: Bending, points 15
22 to 37
Thermal Diffusivity, mm2/s 40
4.0
Thermal Shock Resistance, points 13
14 to 32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.15
67.5 to 75
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 37.5 to 41.8
0
Residuals, % 0 to 0.4
0