MakeItFrom.com
Menu (ESC)

C36500 Muntz Metal vs. S42030 Stainless Steel

C36500 Muntz Metal belongs to the copper alloys classification, while S42030 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C36500 Muntz Metal and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
16
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 400
670
Tensile Strength: Yield (Proof), MPa 160
410

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
780
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
10
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 46
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
92
Resilience: Unit (Modulus of Resilience), kJ/m3 120
440
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
24
Strength to Weight: Bending, points 15
22
Thermal Diffusivity, mm2/s 40
7.7
Thermal Shock Resistance, points 13
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 58 to 61
2.0 to 3.0
Iron (Fe), % 0 to 0.15
77.6 to 85
Lead (Pb), % 0.25 to 0.7
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 37.5 to 41.8
0
Residuals, % 0 to 0.4
0