MakeItFrom.com
Menu (ESC)

C37100 Brass vs. ACI-ASTM CD4MCuN Steel

C37100 brass belongs to the copper alloys classification, while ACI-ASTM CD4MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is ACI-ASTM CD4MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 8.0 to 40
18
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 370 to 520
770
Tensile Strength: Yield (Proof), MPa 150 to 390
550

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
18
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 320
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
760
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13 to 18
28
Strength to Weight: Bending, points 14 to 18
24
Thermal Diffusivity, mm2/s 39
4.5
Thermal Shock Resistance, points 12 to 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 58 to 62
2.7 to 3.3
Iron (Fe), % 0 to 0.15
59.5 to 66.3
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
1.7 to 2.3
Nickel (Ni), % 0
4.7 to 6.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0