MakeItFrom.com
Menu (ESC)

C37100 Brass vs. ASTM A202 Steel

C37100 brass belongs to the copper alloys classification, while ASTM A202 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is ASTM A202 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.0 to 40
17 to 18
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 260 to 300
360 to 410
Tensile Strength: Ultimate (UTS), MPa 370 to 520
590 to 670
Tensile Strength: Yield (Proof), MPa 150 to 390
350 to 360

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.1
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
93 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
330 to 350
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 18
21 to 24
Strength to Weight: Bending, points 14 to 18
20 to 22
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 12 to 17
17 to 20

Comparable Variants