MakeItFrom.com
Menu (ESC)

C37100 Brass vs. SAE-AISI 4620 Steel

C37100 brass belongs to the copper alloys classification, while SAE-AISI 4620 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is SAE-AISI 4620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 8.0 to 40
16 to 27
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 260 to 300
320 to 420
Tensile Strength: Ultimate (UTS), MPa 370 to 520
490 to 680
Tensile Strength: Yield (Proof), MPa 150 to 390
350 to 550

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 900
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
47
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 30
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.2
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 45
22
Embodied Water, L/kg 320
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
330 to 800
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 18
17 to 24
Strength to Weight: Bending, points 14 to 18
18 to 22
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 12 to 17
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.17 to 0.22
Copper (Cu), % 58 to 62
0
Iron (Fe), % 0 to 0.15
96.4 to 97.4
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0