MakeItFrom.com
Menu (ESC)

C37100 Brass vs. N08535 Stainless Steel

C37100 brass belongs to the copper alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 8.0 to 40
46
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
80
Shear Strength, MPa 260 to 300
400
Tensile Strength: Ultimate (UTS), MPa 370 to 520
570
Tensile Strength: Yield (Proof), MPa 150 to 390
240

Thermal Properties

Latent Heat of Fusion, J/g 170
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 900
1420
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 30
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
36
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.3
Embodied Energy, MJ/kg 45
87
Embodied Water, L/kg 320
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13 to 18
20
Strength to Weight: Bending, points 14 to 18
19
Thermal Diffusivity, mm2/s 39
3.3
Thermal Shock Resistance, points 12 to 17
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 58 to 62
0 to 1.5
Iron (Fe), % 0 to 0.15
29.4 to 44.5
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0