MakeItFrom.com
Menu (ESC)

C37100 Brass vs. N10003 Nickel

C37100 brass belongs to the copper alloys classification, while N10003 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C37100 brass and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 8.0 to 40
42
Poisson's Ratio 0.31
0.3
Shear Modulus, GPa 40
80
Shear Strength, MPa 260 to 300
540
Tensile Strength: Ultimate (UTS), MPa 370 to 520
780
Tensile Strength: Yield (Proof), MPa 150 to 390
320

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 120
930
Melting Completion (Liquidus), °C 900
1520
Melting Onset (Solidus), °C 890
1460
Specific Heat Capacity, J/kg-K 380
420
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
70
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 45
180
Embodied Water, L/kg 320
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 120
260
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 750
240
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 13 to 18
24
Strength to Weight: Bending, points 14 to 18
21
Thermal Diffusivity, mm2/s 39
3.1
Thermal Shock Resistance, points 12 to 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 58 to 62
0 to 0.35
Iron (Fe), % 0 to 0.15
0 to 5.0
Lead (Pb), % 0.6 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 36.3 to 41.4
0
Residuals, % 0 to 0.4
0