MakeItFrom.com
Menu (ESC)

C37700 Brass vs. ASTM A369 Grade FP9

C37700 brass belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 40
20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
75
Shear Strength, MPa 270
300
Tensile Strength: Ultimate (UTS), MPa 400
470
Tensile Strength: Yield (Proof), MPa 160
240

Thermal Properties

Latent Heat of Fusion, J/g 170
270
Maximum Temperature: Mechanical, °C 120
600
Melting Completion (Liquidus), °C 890
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 30
10

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 45
28
Embodied Water, L/kg 320
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
17
Strength to Weight: Bending, points 15
17
Thermal Diffusivity, mm2/s 39
6.9
Thermal Shock Resistance, points 13
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.3
87.1 to 90.3
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 35.7 to 40.5
0
Residuals, % 0 to 0.5
0