MakeItFrom.com
Menu (ESC)

C37700 Brass vs. EN 1.3960 Stainless Steel

C37700 brass belongs to the copper alloys classification, while EN 1.3960 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C37700 brass and the bottom bar is EN 1.3960 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 40
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 400
590
Tensile Strength: Yield (Proof), MPa 160
270

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 120
970
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
21
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 45
57
Embodied Water, L/kg 320
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
190
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 14
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 39
3.9
Thermal Shock Resistance, points 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 58 to 61
0
Iron (Fe), % 0 to 0.3
60.2 to 67.9
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
13 to 15
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 35.7 to 40.5
0
Residuals, % 0 to 0.5
0