MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. ACI-ASTM CA6N Steel

C38500 bronze belongs to the copper alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
75
Tensile Strength: Ultimate (UTS), MPa 370
1080
Tensile Strength: Yield (Proof), MPa 130
1060

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 110
740
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 22
11
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.5
Embodied Energy, MJ/kg 45
35
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
180
Resilience: Unit (Modulus of Resilience), kJ/m3 78
2900
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
38
Strength to Weight: Bending, points 14
30
Thermal Diffusivity, mm2/s 40
6.1
Thermal Shock Resistance, points 12
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
77.9 to 83.5
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0