MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. AISI 440A Stainless Steel

C38500 bronze belongs to the copper alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
5.0 to 20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
77
Shear Strength, MPa 230
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 370
730 to 1790
Tensile Strength: Yield (Proof), MPa 130
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 110
760
Melting Completion (Liquidus), °C 890
1480
Melting Onset (Solidus), °C 880
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 45
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
87 to 120
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
26 to 65
Strength to Weight: Bending, points 14
23 to 43
Thermal Diffusivity, mm2/s 40
6.2
Thermal Shock Resistance, points 12
26 to 65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
78.4 to 83.4
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0