MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. EN 1.4110 Stainless Steel

C38500 bronze belongs to the copper alloys classification, while EN 1.4110 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is EN 1.4110 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 14
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
76
Shear Strength, MPa 230
470 to 1030
Tensile Strength: Ultimate (UTS), MPa 370
770 to 1720
Tensile Strength: Yield (Proof), MPa 130
430 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 160
280
Maximum Temperature: Mechanical, °C 110
790
Melting Completion (Liquidus), °C 890
1440
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 31
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 22
8.0
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 45
33
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
90 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 78
480 to 4550
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
28 to 62
Strength to Weight: Bending, points 14
24 to 41
Thermal Diffusivity, mm2/s 40
8.1
Thermal Shock Resistance, points 12
27 to 60

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.48 to 0.6
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
81.4 to 86
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0 to 0.15
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0