MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. EN 1.4424 Stainless Steel

C38500 bronze belongs to the copper alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
28
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
78
Shear Strength, MPa 230
520
Tensile Strength: Ultimate (UTS), MPa 370
800
Tensile Strength: Yield (Proof), MPa 130
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 160
310
Maximum Temperature: Mechanical, °C 110
960
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 880
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
15
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 78
580 to 640
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
29
Strength to Weight: Bending, points 14
25
Thermal Diffusivity, mm2/s 40
3.5
Thermal Shock Resistance, points 12
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
68.6 to 72.4
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0