MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. EN 1.5410 Steel

C38500 bronze belongs to the copper alloys classification, while EN 1.5410 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is EN 1.5410 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
20 to 25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 37
73
Tensile Strength: Ultimate (UTS), MPa 370
560 to 620
Tensile Strength: Yield (Proof), MPa 130
400 to 480

Thermal Properties

Latent Heat of Fusion, J/g 160
250
Maximum Temperature: Mechanical, °C 110
400
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.3
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 45
22
Embodied Water, L/kg 320
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 78
430 to 610
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
20 to 22
Strength to Weight: Bending, points 14
19 to 21
Thermal Diffusivity, mm2/s 40
14
Thermal Shock Resistance, points 12
16 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
96.9 to 98.6
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
1.2 to 1.8
Molybdenum (Mo), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0.050 to 0.1
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0