MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. EN 1.6580 Steel

C38500 bronze belongs to the copper alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17
11 to 19
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 37
73
Shear Strength, MPa 230
450 to 700
Tensile Strength: Ultimate (UTS), MPa 370
720 to 1170
Tensile Strength: Yield (Proof), MPa 130
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 160
250
Maximum Temperature: Mechanical, °C 110
450
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 31
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 22
4.3
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 320
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 78
560 to 2590
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13
26 to 41
Strength to Weight: Bending, points 14
23 to 31
Thermal Diffusivity, mm2/s 40
11
Thermal Shock Resistance, points 12
21 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
93.7 to 95.5
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0