MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. C87900 Brass

Both C38500 bronze and C87900 brass are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is C87900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17
25
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 37
41
Tensile Strength: Ultimate (UTS), MPa 370
480
Tensile Strength: Yield (Proof), MPa 130
240

Thermal Properties

Latent Heat of Fusion, J/g 160
190
Maximum Temperature: Mechanical, °C 110
130
Melting Completion (Liquidus), °C 890
930
Melting Onset (Solidus), °C 880
900
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
15
Electrical Conductivity: Equal Weight (Specific), % IACS 31
17

Otherwise Unclassified Properties

Base Metal Price, % relative 22
24
Density, g/cm3 8.1
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 320
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
100
Resilience: Unit (Modulus of Resilience), kJ/m3 78
270
Stiffness to Weight: Axial, points 7.0
7.3
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 13
17
Strength to Weight: Bending, points 14
17
Thermal Diffusivity, mm2/s 40
37
Thermal Shock Resistance, points 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 55 to 59
63 to 69.2
Iron (Fe), % 0 to 0.35
0 to 0.4
Lead (Pb), % 2.5 to 3.5
0 to 0.25
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.8 to 1.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 36.7 to 42.5
30 to 36
Residuals, % 0 to 0.5
0